Primary and secondary structural elements required for synthesis of barley yellow dwarf virus subgenomic RNA1.

نویسندگان

  • G Koev
  • B R Mohan
  • W A Miller
چکیده

Barley yellow dwarf luteovirus (BYDV) generates three 3'-coterminal subgenomic RNAs (sgRNAs) in infected cells. The promoter of sgRNA1 is a putative hot spot for RNA recombination in luteovirus evolution. The sgRNA1 transcription start site was mapped previously to either nucleotide 2670 or nucleotide 2769 of BYDV genomic RNA (gRNA) in two independent studies. Our data support the former initiation site. The boundaries of the sgRNA1 promoter map between nucleotides 2595 and 2692 on genomic RNA. Computer prediction, phylogenetic comparison, and structural probing revealed two stem-loops (SL1 and SL2) in the sgRNA1 promoter region on the negative strand. Promoter function was analyzed by inoculating protoplasts with a full-length infectious clone of the BYDV genome containing mutations in the sgRNA promoter. Because the promoter is located in an essential coding region of the replicase gene, we duplicated it in a nonessential part of the genome from which a new sgRNA was expressed. Mutational analysis revealed that secondary structure, but not the nucleotide sequence, was important at the base of SL1. Regions with both RNA primary and secondary structural features that contributed to transcription initiation were found at the top of SL1. Primary sequence, but not the secondary structure, was required in SL2, which includes the initiation site. Disruption of base pairing near the sgRNA1 start site increased the level of transcription three- to fourfold. We propose that both primary and secondary structures of the sgRNA1 promoter of BYDV play unique roles in sgRNA1 promoter recognition and transcription initiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A positive-strand RNA virus with three very different subgenomic RNA promoters.

Numerous RNA viruses generate subgenomic mRNAs (sgRNAs) for expression of their 3'-proximal genes. A major step in control of viral gene expression is the regulation of sgRNA synthesis by specific promoter elements. We used barley yellow dwarf virus (BYDV) as a model system to study transcriptional control in a virus with multiple sgRNAs. BYDV generates three sgRNAs during infection. The sgRNA1...

متن کامل

trans regulation of cap-independent translation by a viral subgenomic RNA.

Many positive-strand RNA viruses generate 3'-coterminal subgenomic mRNAs to allow translation of 5'-distal open reading frames. It is unclear how viral genomic and subgenomic mRNAs compete with each other for the cellular translation machinery. Translation of the uncapped Barley yellow dwarf virus genomic RNA (gRNA) and subgenomic RNA1 (sgRNA1) is driven by the powerful cap-independent translat...

متن کامل

Subgenomic RNA as a riboregulator: negative regulation of RNA replication by Barley yellow dwarf virus subgenomic RNA 2.

Barley yellow dwarf virus (BYDV) generates three 3'-coterminal subgenomic RNAs (sgRNAs) in infected cells. Translation of BYDV genomic RNA (gRNA) and sgRNA1 is mediated by the BYDV cap-independent translation element (BTE) in the 3' untranslated region. sgRNAs 2 and 3 are unlikely to be mRNAs. We proposed that accumulation of sgRNA2, which contains the BTE in its 5' UTR, regulates BYDV replicat...

متن کامل

Flock house virus: down-regulation of subgenomic RNA3 synthesis does not involve coat protein and is targeted to synthesis of its positive strand.

Flock house virus is a small insect virus with a bipartite RNA genome consisting of RNA1 and RNA2. RNA3 is a subgenomic element encoded by RNA1, the genomic segment required for viral RNA synthesis (T. M. Gallagher, P. D. Friesen, and R. R. Rueckert, J. Virol. 46:481-489, 1983). Synthesis of RNA3 is strongly inhibited by RNA2, the gene for viral coat protein. Evidence that coat protein is not t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of virology

دوره 73 4  شماره 

صفحات  -

تاریخ انتشار 1999